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Compact spinor space-times 

G S Whiston 
‘Chestnuts’, 1 Cramhurst Lane, Witley, Surrey, UK 

Received 20 October 1977, in final form 10 April 1978 

Abstract. It is demonstrated that a compact spinor space-time manifold need not be 
parallelisable. Necessary and sufficient conditions are derived for a parallelisation and 
counter examples are constructed. 

1. Introduction 

Most smooth four-manifolds used in general relativity are assumed to be non- 
compact. This is theoretically necessary if causality is required because in certain 
circumstances, compact space-times can have closed time-like curves. However, 
compact space-times can provide useful and interesting examples of Lorentzian 
four-manifolds. In order to define global spinor fields on space-times, one must be 
able to replace the proper orthochronous Lorentz group by its universal covering 
group SL(2, e). Such a requirement places a stringent topological condition upon the 
underlying four-manifold. Geroch (1968) demonstrated that a non-compact space- 
time can admit a spinor structure if and only if it is parallelisable. Lee (1975) claimed 
that the theorem also applies to compact space-times. It is the purpose of this paper 
to demonstrate that Geroch’s theorem does not in fact extend to compact space- 
times. A necessary and sufficient condition is obtained for a compact spinor space- 
time to be parallelisable, and in so doing, a family of counter examples is constructed. 

2. Topological machinery 

Suppose that G is a Lie group. Then there exists a universal classifying space BG for 
principal G-bundles over paracompact base spaces. BG is the base space of the 
universal G-bundle 60. The bundle is universal in the sense that if 6 is any principal 
G-bundle over a paracompact base X ,  there exists a map f:  X -* BG (defined up to a 
homotopy) such that 6 is bundle isomorphic to the pull-back (Husemoller 1966), 
fr(&) of & from B G  to X along f. A principal G-bundle can admit a cross section if 
and only if it is bundle isomorphic to the trivial principal G-bundle on its base, the 
topological product of G by the base. Equivalently, a principal G-bundle can admit a 
cross section if and only if its classifying map is homotopic to a map which lifts from 
BG to the total space EG of 60. One can approach the problem of deciding when 
such liftings exist by examining the problem of finding a cross section (or lifting of the 
identity map of BG) of &. The algebraic obstructions to lifting the identity map of 
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BG are the universal cohomology obstruction classes: 

Such a lifting exists if and only if all the obstruction classes are trivial. Because G is a 
Lie group IT1(G) and therefore I lk(G) for all k are Abelian groups. If A is an Abelian 
group, the generators of the cohomology algebra H*(BG, A )  are called universal 
characteristic classes in A for principal G-bundles. By definition, the universal 
obstruction classes can be expressed in terms of the universal characteristic classes. 
The former are universal in the sense that if f": H*(BG, A)+H*(X,  A )  is the 
cohomology homomorphism induced by the classifying map f of a principal G-bundle 
6 =f"(eG) with base X, then the classes f"(&) are the obstructions to a cross section of 
6. Clearly, f"(&) are expressible in terms of the pulled-back universal characteristic 
classes, the characteristic classes of 6. We shall need to consider the following cases. 

(1) G = O(n), A = Z2. The cohomology algebra H*(BO(n), Z,) is generated over Z2 
by universal Stiefel-Whitney characteristic classes ( Wi), i = 0, n, where Wi E 
H'(BO(n), Z,) and WO = 1. Note that the monomials nYe1 W? with ZLl  m i .  qi = q 
form bases for Hq(BO(n), Z,) over Z2. 

(2) G = SO(n), A = ZZ. The cohomology algebra H*(BSO(n), Z2) is isomorphic to 
the quotient of H*(BO(n), Z,) by the ideal generated by W1. This follows from the 
group isomorphism SO(n)=O(n)/Z2 and the fact that H*(BZ2, Z2) is the polynomial 
algebra on W1. Note in particular that H'(BSO(n), Z2) = 0 and that H2(BSO(n), Z,) 
is generated by WZ. 

(3) G = SO(n), A = Z. Let be the ideal of elements of order two in the cohomology 
algebra H*(BSO(n), Z). Then the algebra H*(BSO(n), 2 9 / 2 1  is freely generated over 
Z by universal Pontryagin classes (Pi ) ,  i =0 ,  4 2 ,  where Po= 1 and P i c  
H4'(BSO(n), E), with the additional generator E the universal Euler class in 
H"(BSO(n), Z) if n is even. Note that n/2 = K if n = 2K or n = 2K + 1. 

In the applications, much use will be made of the rich algebraic structure of 
cohomology algebras. The following structures and invariants will all be required. 

(4) If X is compact and orientable over A, the top dimensional homology group 
H,,(X, A )  is isomorphic to A. (Note that if X is non-compact and orientable over Z, 
H,(X, A )  = 0.) The generator of H,(X, A )  is called the fundamental class of X in A 
and will be denoted by (X). 

( 5 )  Homology and cohomology with coefficients in A are paired to A via the 
Kronecker product (0 denotes the usual tensor product). This is the bilinear map: 

If p E H"(X, A )  is a linear combination of n-dimensional products of characteristic 
classes in A,  the Kronecker product p . (X)  is called an A-characteristic number. It is 
a classical result of cobordism theory that the Pontryagin and Stiefel-Whitney 
numbers are oriented cobordism invariants. 

(6)  The topological signature or index of an oriented 4k-manifold is a particularly 
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useful tool. It is defined as follows. The cohomology cup products (Spanier 1966) 

.U *: H Z k ( X ,  R 0 H Z k ( X ,  R ) + H 4 k ( X ,  R) 

* U  .: x 0 y H X  u y  

together with the Kronecker product with the fundamental class defines a non- 
degenerate symmetric bilinear form q X ( x ,  y )  = ( x  U y )  . ( X )  on the real linear space 
H z k ( X ,  R). The signature of X ,  sig(X), is defined as the signature of qx. This integer 
is another oriented cobordism invariant and is related to the Pontryagin characteristic 
classes through the Hirzebruch (1966) signature theorem. The Hirzebruch L-genus is 
a rational polynomial in Pontryagin classes and the signature theorem yields the result 
that Lk. ( X )  =si@), where Lk is the projection of L in the top dimensional 
cohomology group, For four-manifolds, this reduces to the theorem of Thom: 
sig(X) = iPl . ( X ) .  Similarly, the integrality of the rational A-genus when X is a spin 
manifold yields A . (X) = P .  ( X ) / 2 4  is an even integer if X is a four-manifold. 
Therefore, if X is a four-dimensional spin manifold, the integer P1 , ( X )  is divisible by 
48, which is Rohlin‘s theorem. 

(7) The last invariant that we shall need is the Wu class of a four-manifold. Replacing 
the field R by Zz in (6) yields a linear functional W on H2(X7 ZZ) defined by 
W ( x )  = x U x . ( X ) .  (Note that ( x  + y)’ = x 2  + y 2  in ZZ arithmetic.) Therefore, W may 
be identified with an element of the vector dual space Hz(X7 Zz) of H2(X,  ZZ). But 
recall that the Poincart duality theorem yields an isomorphism: 

, n (X): H2(X, 22)’ H*(X, Zz) 

. n ( X ) :  x - X  n ( X )  

where ‘n’ aenotes the bilinear cap-product from cohomologyO homology into 
homology (Spanier 1966). There must therefore be a cohomology class V in 
H2(X,  Z2) such that W ( x )  = x . ( V  n (X)) = ( V u  x )  . ( X ) .  This implies that x U x = 
V u  x for all x ,  where V is called the Wu class of X .  In general, V is a polynomial of 
dimension 2k in the Stiefel-Whitney classes; in our case, V = W2. 

3. Spinor space-times 

In this section, we shall re-derive the theorem of Hirzebruch and Hopf (1968) which 
states necessary and sufficient conditions for a given compact orientable four-manifold 
to be parallelisable. We specialise these results to the case of a compact spinor 
space-time. In our constructions, much use will be made of the following. If X is a 
compact oriented four-manifold, a spherical modification of X is a manifold X ,  
obtained by excising the interior B4 of a closed four-disc D4 from X and from S’ x S 3  
and identifying the resulting boundary three-spheres. The following theorem sum- 
marises the properties of spherical modification that we shall use below. 

Theorem 1. Let X be a compact orientable four-manifold. Then if X ,  is a spherical 
modification of X ,  the characteristic classes are related as follows: 

(1) 
(2 ) E .  ( X , ) = E .  (X)-2 
(3 1 

W Z ( X )  f 0 if and only if Wz(X,) # 0 

P1 . (XJ = PI . ( X )  
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Proof. (1) W2 is identified with the Wu class and we therefore use the fact that W2 # 0 
if and only if there exists a mod(2) cohomology class x with x U x # 0. Firstly, 
W2(X)#O implies that W2(Xs)#0 .  Let D4 be a closed four-disc in X and let 
X ’  = X\a4 .  The inclusion maps X ’  4 X ,  X ’  c; X ,  and (S’ x S3)’ 4 X ,  are denoted by i, 
j and k respectively. We assert that the induced cohomology homomorphisms 

iz* : H2(X,  Z2) += H 2 ( X ‘ ,  Z2) and j ;  : H2(X, ,  Z2) + H 2 ( X ’ ,  Z2) 

are isomorphisms. To see this, consider the Mayer-Vietoris sequence: 

Jf is the homomorphism defined by J: : x H j T  ( x ) +  kT ( x ) .  Because H’(S3,  Z2) and 
H 2 ( S 3 ,  Z2) are trivial groups, Jf is an isomorphism by exactness. But then j ?  is an 
isomorphism because H2((S’ x S3)’, Z2) = 0 follows from the Mayer-Vietoris 
sequence for S’ x S 3  = (S’ x S3)r U D4 together with the fact that H2(S1 X S 3 ,  Z2) = 0. 
Similarly the assertion that i ;  is an isomorphism follows from the Mayer-Vietoris 
sequence for X = X ’  U D4. Since W 2 ( X )  # 0, there exists a class U E H2(X,  Z2) with 
U U U # 0. Let U’ = i T ( u ) ,  then u ’ u  U’ # 0. For, u’u U’ = if (u)u i ; ( u ) =  i f  (U U U )  
where it is the four-dimensional cohomology homomorphism induced by i. Since 
U U U # 0 ,  U ’  U U’ # 0 will follow if i f  is a monomorphism. But this is the case as can be 
seen by examining the relevant part of the Mayer-Vietoris sequence for X = X ’  U D4 
and noting that H4(D4, Z2) = 0 implies that I f  = i f  and therefore exactness yields 
Ker(if)= Im(&) which is a trivial group because S 3  bounds in X .  If u ” = j z * - ’ ( u ’ ) ~  
H2(X, ,  Z2), U ”  U U” # 0 because j f  (U” U U”) = j :  (U”) U j ;  (U’’) = U ’  U U ’  # 0. Therefore 
W2(Xs)#0 .  Conversely, W2(Xs)#0  implies W 2 ( X ) # 0 .  Let w be a class in 
H2(Xs ,  Z2) with w U w # 0 and let w ’  = j z  (w). Then w‘ U w ’  # 0 because w ’  U w ’  = 
j z * ( w ) u j ~ ( w ) =  j f ( w  U w )  and j z  is a monomorphism. The latter assertion follows 
from the Mayer-Vietoris sequence: 

Jz (w U w ) = j f ( w  U w ) + k , * ( w  U w). The class k;(w U w )  is just k z ( w ) u k T ( w )  
which is trivial because H2((S1 x S 3 y ,  Z2) is a trivial group. Therefore if (w U w )  = 
J z  (w U w )  which is non-zero because Im(&) = Ker(Jz ) = 0, because S 3  bounds in X,. 
Finally, if we define w ”  = if-’(w‘) in H2(X,  Z,), w”u w” # 0 because it (w”u w”) = 
w ’  U w’ # 0. Therefore W 2 ( X )  # 0. 

( 2 )  E . (X,)  = E , ( X )  - 2 follows easily from the Mayer-Vietoris sequences of the 
decompositions X,  = X ’  U (S’  X S3)’ ,  X = X ’ u  D4 and S’ X S 3  = (S‘ x S3)’ U D4. 

( 3 )  P1 . (X , )  =PI . ( X )  follows from the classic result that manifolds related by general 
spherical modifications are cobordant. 

Recall that a parallelisation of a four-manifold X is a cross section of its principal 
SO(4) frame bundle and that such a section can exist if and only if the pulled-back 
images of the universal obstruction classes vanish. We need only consider the cases in 
dimensions one to four because the cohomology of X is trivial in higher dimensions. It 
is easy to show that the group SO(4) is diffeomorphic to the product SO(3) X S 3  which 
is in turn diffeomorphic to R P 3 x S 3 .  The homotopy groups of SO(4) are therefore 
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We examine the universal obstructions in turn (clearly 83 = 0). 

(1) E H1(BS0(4), Z). Recall that H1(BS0(4), Z) consists entirely of elements of 
order two. This implies that the group must be isomorphic to a subgroup of 
H'(X, Z2), which as we noted above is a trivial group. Therefore 81 = 0. 

(2) O2 E H2(BS0(4), Z2). The space H2(BS0(4), Z2) is the one-dimensional Z2 linear 
space with basis the class W2. It therefore follows that there exists a number z in Z2 
such that O2 = z , W2. Now z = 0 or 1. We demonstrate that t = 1 by constructing a 
compact orientable four-manifold X whose four-dimensional obstruction classes (PI 
and E, see below) are trivial but which is non-parallelisable with W2(X)# 0. Let XO 
be the total space of the non-trivial two-sphere bundle over S2. (The isomorphism 
classes of such bundles are in one-to-one correspondence with the set of isomorphism 
classes of associated principal SO(3) bundles. By universality, the latter set is just the 
set of homotopy classes of maps from S2  into BS0(3), i.e. l&(BS0(3) )~ l I~(S0(3) )=  
H 2 ,  implying that there is just one non-trivial class.) It can be shown that XO is 
diffeomorphic to the connected sum CP: & CP? of two oppositely oriented copies of 
the complex projective plane CP?. Note that W2(X0)#0 since by using methods 
similar to those used in the proof of part (1) of theorem 1, one can derive a class x in 
H2(Xo, Z2) with x U x # 0 from the Stiefel-Whitney class W2(CP2). The latter has 
W2(CP2) U W2(CP2) # 0 because for any four-manifold X,  W2(X)u  W2(X) . ( X )  = 
E . ( X )  mod(2) and E . (CP') = 3 .  Pl(Xo) = 0 follows from the fact that Xo is cobor- 
dant to the disjoint sum CP: U CP? which is the boundary of the cylinder C P 2 X D 1 .  
E . ( X o )  = 2 is easily derived from Mayer-Vietoris arguments. Therefore using 
theorem 1, the modified manifold Xo, has W2 # 0, E . (Xes) = 0 and PI  . (XO,) = 0 .  XO, 
cannot be parallelisable since it has at least one non-trivial characteristic class. 

Note that the above manifold is an example of a compact space-time which cannot 
admit a spinor structure. Another example can easily be derived from the complex 
projective plane which this time has a non-trivial Pontryagin number. Take Y = 
CP: & CP:. Then it is easy to show that E .  (Y)= 2. P1. (Y)= +6 follows most 
easily from the observation that Y is oriented cobordant to the disjoint sum CP: U 

CP: which trivially has signature +2. Ys is therefore a compact space-time (because 
E . ( Y,) = 0) but cannot be a spinor manifold because P1 . ( Y) = 6 contradicts Rohlin's 
theorem. 

(3) 8 4 ~ H ~ ( B S 0 ( 4 ) ,  ZOZ). It is easy to show that the cohomology group is iso- 
morphic to the direct sum of two copies of H4(BS0(4),H). Recall that the latter 
group is generated by E and PI (modulus elements of order two, which we ignore since 
we are really interested in the images of 04  in groups H4(X,  ZOZ) which are free 
Abelian). But then it follows that H4(BSO(4), ZOZ) is freely generated over the ring 
ZOZ by the universal Euler class E and the universal Pontryagin class P1. We 
therefore have to find elements ( a l , a 2 )  and ( b 1 , b 2 )  of ZOZ such that 04= 
(a l ,  u2) .  E+ (bl; b2) .  PI. Without being able to compute these numbers explicitly, we 
can show that neither is trivial by geometrical constructions. 

( a )  ( a l ,  a2) # 0. This is demonstrated by exhibiting a compact four-manifold X with 
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W 2 ( X )  = 0 ,  P1 . ( X )  = 0, but E . ( X )  # 0. The obvious example is S4 which has Wi = 0 
for all i # 0, PI . (S4) = 0 following from the fact that S4 = &D5 and E .  (S4) = 2. 

( b )  (bl, bZ)# 0. Suppose that we were able to find a starting manifold X with 
non-trivial Pontryagin number, trivial second Stiefel-Whitney class and with a posi- 
tive even Euler number, Then, using theorem 1, we could obtain a modified manifold 
X ,  with non-trivial Pontryagin number, trivial second Stiefel-Whitney class and a 
trivial Euler number. The existence of such a manifold would verify the assertion 
(bl, b2) # 0. Two types of starting manifold exist. The classic example is the Kummer 
surface (Spanier 1958). This space is derived from the four-torus under the 
singular ZZ action represented by complex conjugation in each factor of the product. 
The quotient space is a manifold except around the sixteen singular points 
( k l ,  *l, * l ,  k l ) .  The Kummer surface is obtained by ‘smoothing out’ these sixteen 
singular points. Its characteristic classes, derived in (Spanier 1958) are PI . ( X )  = 48, 
E ,  ( X ) = 2 4 ,  and W 2 = 0 .  By theorem 1, twelve spherical modifications will kill the 
Euler number but leave PI . ( X )  = 48 and wz(X)  = 0. 

A whole family of possible starting manifolds is the set of non-singular algebraic 
surfaces in CP3 of degree four (Milnor 1958, Hirzebruch 1966) which have E . ( X )  = 
24, P1 . ( X )  = -48 and W2(X) = 0. 

Note that any of the above spherically modified compact four-manifolds provide 
direct counter examples to the assertion by Lee (1975), all being compact non- 
parallelisable spinor space-times. 

We are now in a position to re-derive the theorem of Hirzebruch and Hopf. 

Theorem 2. A smooth, compact, orientable four-manifold is parallelisable if and only 
i fP1=O,E=Oand  Wz=O. 

Proof. Clearly, if P1, E and W2 are all trivial, all the obstructions must vanish. 
Conversely, if a four-manifold is parallelisable, all its characteristic classes must be 
trivial. 

Corollary. A compact spinor space-time is parallelisable if and only if its Pontryagin 
number is trivial, or equivalently, if and only if it is a spin boundary. 

Proof. The first assertion is obvious by Steenrod’s theorem. The second follows from 
the fact that an oriented four-manifold is an oriented boundary if and only if its 
Pontryagin number is trivial. (An oriented boundary with a spin structure must 
therefore be spin cobordant to a spinor boundary and hence spin cobordant.) 
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