

Home Search Collections Journals About Contact us My IOPscience

Compact spinor space-times

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1978 J. Phys. A: Math. Gen. 11 1203 (http://iopscience.iop.org/0305-4470/11/7/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 30/05/2010 at 18:54

Please note that terms and conditions apply.

# **Compact spinor space-times**

G S Whiston

'Chestnuts', 1 Cramhurst Lane, Witley, Surrey, UK

Received 20 October 1977, in final form 10 April 1978

**Abstract.** It is demonstrated that a compact spinor space-time manifold need not be parallelisable. Necessary and sufficient conditions are derived for a parallelisation and counter examples are constructed.

### 1. Introduction

Most smooth four-manifolds used in general relativity are assumed to be noncompact. This is theoretically necessary if causality is required because in certain circumstances, compact space-times can have closed time-like curves. However, compact space-times can provide useful and interesting examples of Lorentzian four-manifolds. In order to define global spinor fields on space-times, one must be able to replace the proper orthochronous Lorentz group by its universal covering group  $SL(2, \mathbb{C})$ . Such a requirement places a stringent topological condition upon the underlying four-manifold. Geroch (1968) demonstrated that a non-compact spacetime can admit a spinor structure if and only if it is parallelisable. Lee (1975) claimed that the theorem also applies to compact space-times. It is the purpose of this paper to demonstrate that Geroch's theorem does not in fact extend to compact spacetimes. A necessary and sufficient condition is obtained for a compact spinor spacetime to be parallelisable, and in so doing, a family of counter examples is constructed.

#### 2. Topological machinery

Suppose that G is a Lie group. Then there exists a universal classifying space BG for principal G-bundles over paracompact base spaces. BG is the base space of the universal G-bundle  $\xi_G$ . The bundle is universal in the sense that if  $\xi$  is any principal G-bundle over a paracompact base X, there exists a map  $f: X \rightarrow BG$  (defined up to a homotopy) such that  $\xi$  is bundle isomorphic to the pull-back (Husemoller 1966),  $f^*(\xi_G)$  of  $\xi_G$  from BG to X along f. A principal G-bundle can admit a cross section if and only if it is bundle isomorphic to the trivial principal G-bundle on its base, the topological product of G by the base. Equivalently, a principal G-bundle can admit a cross section if and only if its classifying map is homotopic to a map which lifts from BG to the total space EG of  $\xi_G$ . One can approach the problem of deciding when such liftings exist by examining the problem of finding a cross section (or lifting of the identity map of BG) of  $\xi_G$ . The algebraic obstructions to lifting the identity map of

BG are the universal cohomology obstruction classes:

$$\theta_K \in H^k(BG, \Pi_{k-1}(G)).$$

Such a lifting exists if and only if all the obstruction classes are trivial. Because G is a Lie group  $\Pi_1(G)$  and therefore  $\Pi_k(G)$  for all k are Abelian groups. If A is an Abelian group, the generators of the cohomology algebra  $H^*(BG, A)$  are called universal characteristic classes in A for principal G-bundles. By definition, the universal obstruction classes can be expressed in terms of the universal characteristic classes. The former are universal in the sense that if  $f^*: H^*(BG, A) \to H^*(X, A)$  is the cohomology homomorphism induced by the classifying map f of a principal G-bundle  $\xi \cong f^*(\xi_G)$  with base X, then the classes  $f^*(\theta_k)$  are the obstructions to a cross section of  $\xi$ . Clearly,  $f^*(\theta_k)$  are expressible in terms of the pulled-back universal characteristic classes.

(1)  $G = O(n), A = \mathbb{Z}_2$ . The cohomology algebra  $H^*(BO(n), \mathbb{Z}_2)$  is generated over  $\mathbb{Z}_2$  by universal Stiefel-Whitney characteristic classes  $\langle W_i \rangle$ , i = 0, n, where  $W_i \in H^i(BO(n), \mathbb{Z}_2)$  and  $W_0 = 1$ . Note that the monomials  $\prod_{i=1}^m W_{q_i}^{m_i}$  with  $\sum_{i=1}^m m_i \cdot q_i = q$  form bases for  $H^q(BO(n), \mathbb{Z}_2)$  over  $\mathbb{Z}_2$ .

(2) G = SO(n),  $A = \mathbb{Z}_2$ . The cohomology algebra  $H^*(BSO(n), \mathbb{Z}_2)$  is isomorphic to the quotient of  $H^*(BO(n), \mathbb{Z}_2)$  by the ideal generated by  $W_1$ . This follows from the group isomorphism  $SO(n) \cong O(n)/\mathbb{Z}_2$  and the fact that  $H^*(B\mathbb{Z}_2, \mathbb{Z}_2)$  is the polynomial algebra on  $W_1$ . Note in particular that  $H^1(BSO(n), \mathbb{Z}_2) = 0$  and that  $H^2(BSO(n), \mathbb{Z}_2)$  is generated by  $W_2$ .

(3)  $G = SO(n), A = \mathbb{Z}$ . Let  $_2I$  be the ideal of elements of order two in the cohomology algebra  $H^*(BSO(n), \mathbb{Z})$ . Then the algebra  $H^*(BSO(n), \mathbb{Z})/_2I$  is freely generated over  $\mathbb{Z}$  by universal Pontryagin classes  $\langle P_i \rangle$ , i = 0, n/2, where  $P_0 = 1$  and  $P_i \in H^{4i}(BSO(n), \mathbb{Z})$ , with the additional generator E the universal Euler class in  $H^n(BSO(n), \mathbb{Z})$  if n is even. Note that  $n/2 \equiv K$  if n = 2K or n = 2K + 1.

In the applications, much use will be made of the rich algebraic structure of cohomology algebras. The following structures and invariants will all be required.

(4) If X is compact and orientable over A, the top dimensional homology group  $H_n(X, A)$  is isomorphic to A. (Note that if X is non-compact and orientable over  $\mathbb{Z}$ ,  $H_n(X, A) = 0$ .) The generator of  $H_n(X, A)$  is called the fundamental class of X in A and will be denoted by  $\langle X \rangle$ .

(5) Homology and cohomology with coefficients in A are paired to A via the Kronecker product ( $\otimes$  denotes the usual tensor product). This is the bilinear map:

$$H^{k}(X, A) \otimes H_{k}(X, A) \rightarrow A$$
$$v \otimes x \mapsto v \cdot x.$$

If  $p \in H^n(X, A)$  is a linear combination of *n*-dimensional products of characteristic classes in A, the Kronecker product  $p \, \langle X \rangle$  is called an A-characteristic number. It is a classical result of cobordism theory that the Pontryagin and Stiefel-Whitney numbers are oriented cobordism invariants.

(6) The topological signature or index of an oriented 4k-manifold is a particularly

useful tool. It is defined as follows. The cohomology cup products (Spanier 1966)

$$. \cup .: H^{2k}(X, \mathbb{R} \otimes H^{2k}(X, \mathbb{R}) \to H^{4k}(X, \mathbb{R})$$
$$. \cup .: x \otimes y \mapsto x \cup y$$

together with the Kronecker product with the fundamental class defines a nondegenerate symmetric bilinear form  $q_X(x, y) = (x \cup y) \cdot \langle X \rangle$  on the real linear space  $H^{2k}(X, \mathbb{R})$ . The signature of X,  $\operatorname{sig}(X)$ , is defined as the signature of  $q_X$ . This integer is another oriented cobordism invariant and is related to the Pontryagin characteristic classes through the Hirzebruch (1966) signature theorem. The Hirzebruch *L*-genus is a rational polynomial in Pontryagin classes and the signature theorem yields the result that  $L_k \cdot \langle X \rangle = \operatorname{sig}(X)$ , where  $L_k$  is the projection of *L* in the top dimensional cohomology group. For four-manifolds, this reduces to the theorem of Thom:  $\operatorname{sig}(X) = \frac{1}{3}P_1 \cdot \langle X \rangle$ . Similarly, the integrality of the rational *A*-genus when *X* is a spin manifold yields  $A \cdot \langle X \rangle = P \cdot \langle X \rangle/24$  is an even integer if *X* is a four-manifold. Therefore, if *X* is a four-dimensional spin manifold, the integer  $P_1 \cdot \langle X \rangle$  is divisible by 48, which is Rohlin's theorem.

(7) The last invariant that we shall need is the Wu class of a four-manifold. Replacing the field  $\mathbb{R}$  by  $\mathbb{Z}_2$  in (6) yields a linear functional W on  $H^2(X, \mathbb{Z}_2)$  defined by  $W(x) = x \cup x . \langle X \rangle$ . (Note that  $(x + y)^2 = x^2 + y^2$  in  $\mathbb{Z}_2$  arithmetic.) Therefore, W may be identified with an element of the vector dual space  $H_2(X, \mathbb{Z}_2)$  of  $H^2(X, \mathbb{Z}_2)$ . But recall that the Poincaré duality theorem yields an isomorphism:

$$(\land \langle X \rangle : H^{2}(X, \mathbb{Z}_{2}) \to H_{2}(X, \mathbb{Z}_{2})$$
$$(\land \langle X \rangle : x \mapsto x \land \langle X \rangle$$

where ' $\cap$ ' denotes the bilinear cap-product from cohomology  $\otimes$  homology into homology (Spanier 1966). There must therefore be a cohomology class V in  $H^2(X, \mathbb{Z}_2)$  such that  $W(x) = x \cdot (V \cap \langle X \rangle) = (V \cup x) \cdot \langle X \rangle$ . This implies that  $x \cup x = V \cup x$  for all x, where V is called the Wu class of X. In general, V is a polynomial of dimension 2k in the Stiefel-Whitney classes; in our case,  $V = W_2$ .

#### 3. Spinor space-times

In this section, we shall re-derive the theorem of Hirzebruch and Hopf (1968) which states necessary and sufficient conditions for a given compact orientable four-manifold to be parallelisable. We specialise these results to the case of a compact spinor space-time. In our constructions, much use will be made of the following. If X is a compact oriented four-manifold, a spherical modification of X is a manifold  $X_s$ obtained by excising the interior  $D^4$  of a closed four-disc  $D^4$  from X and from  $S^1 \times S^3$ and identifying the resulting boundary three-spheres. The following theorem summarises the properties of spherical modification that we shall use below.

Theorem 1. Let X be a compact orientable four-manifold. Then if  $X_s$  is a spherical modification of X, the characteristic classes are related as follows:

- (1)  $W_2(X) \neq 0$  if and only if  $W_2(X_s) \neq 0$
- (2)  $E \cdot \langle X_s \rangle = E \cdot \langle X \rangle 2$
- (3)  $P_1 \cdot \langle X_s \rangle = P_1 \cdot \langle X \rangle$

**Proof.** (1)  $W_2$  is identified with the Wu class and we therefore use the fact that  $W_2 \neq 0$ if and only if there exists a mod(2) cohomology class x with  $x \cup x \neq 0$ . Firstly,  $W_2(X) \neq 0$  implies that  $W_2(X_s) \neq 0$ . Let  $D^4$  be a closed four-disc in X and let  $X' = X \setminus D^4$ . The inclusion maps  $X' \subseteq X, X' \subseteq X_s$  and  $(S^1 \times S^3)' \subseteq X_s$  are denoted by *i*, *j* and *k* respectively. We assert that the induced cohomology homomorphisms

$$i_2^*: H^2(X, \mathbb{Z}_2) \rightarrow H^2(X', \mathbb{Z}_2)$$
 and  $j_2^*: H^2(X_s, \mathbb{Z}_2) \rightarrow H^2(X', \mathbb{Z}_2)$ 

are isomorphisms. To see this, consider the Mayer-Vietoris sequence:

$$\rightarrow H^1(S^3, \mathbb{Z}_2) \underset{d^*}{\rightarrow} H^2(X_s, \mathbb{Z}_2) \underset{J_2^*}{\rightarrow} H^2(X', \mathbb{Z}_2) \oplus H^2((S^1 \times S^3)', \mathbb{Z}_2) \rightarrow H^2(S^3, \mathbb{Z}_2).$$

 $J_2^*$  is the homomorphism defined by  $J_2^*: x \mapsto j_2^*(x) + k_2^*(x)$ . Because  $H^1(S^3, \mathbb{Z}_2)$  and  $H^2(S^3, \mathbb{Z}_2)$  are trivial groups,  $J_2^*$  is an isomorphism by exactness. But then  $j_2^*$  is an isomorphism because  $H^2((S^1 \times S^3)', \mathbb{Z}_2) = 0$  follows from the Mayer-Vietoris sequence for  $S^1 \times S^3 = (S^1 \times \tilde{S}^3)' \cup D^4$  together with the fact that  $H^2(S^1 \times S^3, \mathbb{Z}_2) = 0$ . Similarly the assertion that  $i_2^*$  is an isomorphism follows from the Mayer-Vietoris sequence for  $X = X' \cup D^4$ . Since  $W_2(X) \neq 0$ , there exists a class  $v \in H^2(X, \mathbb{Z}_2)$  with  $v \cup v \neq 0$ . Let  $v' = i_2^*(v)$ , then  $v' \cup v' \neq 0$ . For,  $v' \cup v' = i_2^*(v) \cup i_2^*(v) = i_4^*(v \cup v)$ where  $i_4^*$  is the four-dimensional cohomology homomorphism induced by *i*. Since  $v \cup v \neq 0$ ,  $v' \cup v' \neq 0$  will follow if  $i_4^*$  is a monomorphism. But this is the case as can be seen by examining the relevant part of the Mayer-Vietoris sequence for  $X = X' \cup D^4$ and noting that  $H^4(D^4, \mathbb{Z}_2) = 0$  implies that  $I_4^* = i_4^*$  and therefore exactness yields  $\operatorname{Ker}(i_4^*) = \operatorname{Im}(d_4^*)$  which is a trivial group because  $S^3$  bounds in X. If  $v'' = j_2^{*-1}(v') \in I$  $H^{2}(X_{s}, \mathbb{Z}_{2}), v'' \cup v'' \neq 0$  because  $j_{4}^{*}(v'' \cup v'') = j_{2}^{*}(v'') \cup j_{2}^{*}(v'') = v' \cup v' \neq 0$ . Therefore  $W_2(X_s) \neq 0$ . Conversely,  $W_2(X_s) \neq 0$  implies  $W_2(X) \neq 0$ . Let w be a class in  $H^2(X_s, \mathbb{Z}_2)$  with  $w \cup w \neq 0$  and let  $w' = j_2^*(w)$ . Then  $w' \cup w' \neq 0$  because  $w' \cup w' = j_2^*(w)$ .  $j_2^*(w) \cup j_2^*(w) = j_4^*(w \cup w)$  and  $j_4^*$  is a monomorphism. The latter assertion follows from the Mayer-Vietoris sequence:

$$H^{3}(S^{3}, \mathbb{Z}_{2}) \xrightarrow[d^{4}]{} H^{4}(X_{s}, \mathbb{Z}_{2}) \xrightarrow[J^{4}]{} H^{4}(X', \mathbb{Z}_{2}) \oplus H^{4}((S^{1} \times S^{3})', \mathbb{Z}_{2})$$

 $J_4^*(w \cup w) = j_4^*(w \cup w) + k_4^*(w \cup w)$ . The class  $k_4^*(w \cup w)$  is just  $k_2^*(w) \cup k_2^*(w)$ which is trivial because  $H^2((S^1 \times S^3)', \mathbb{Z}_2)$  is a trivial group. Therefore  $j_4^*(w \cup w) = J_4^*(w \cup w)$  which is non-zero because  $\operatorname{Im}(d_4^*) = \operatorname{Ker}(J_4^*) = 0$ , because  $S^3$  bounds in  $X_s$ . Finally, if we define  $w'' = i_2^{*-1}(w')$  in  $H^2(X, \mathbb{Z}_2)$ ,  $w'' \cup w'' \neq 0$  because  $i_4^*(w'' \cup w'') = w' \cup w' \neq 0$ . Therefore  $W_2(X) \neq 0$ .

(2) E.  $\langle X_s \rangle = E \cdot \langle X \rangle - 2$  follows easily from the Mayer-Vietoris sequences of the decompositions  $X_s = X' \cup (S^1 \times S^3)', X = X' \cup D^4$  and  $S^1 \times S^3 = (S^1 \times S^3)' \cup D^4$ .

(3)  $P_1 \cdot \langle X_s \rangle = P_1 \cdot \langle X \rangle$  follows from the classic result that manifolds related by general spherical modifications are cobordant.

Recall that a parallelisation of a four-manifold X is a cross section of its principal SO(4) frame bundle and that such a section can exist if and only if the pulled-back images of the universal obstruction classes vanish. We need only consider the cases in dimensions one to four because the cohomology of X is trivial in higher dimensions. It is easy to show that the group SO(4) is diffeomorphic to the product SO(3)  $\times S^3$  which is in turn diffeomorphic to  $\mathbb{R}P^3 \times S^3$ . The homotopy groups of SO(4) are therefore

given by

$$\Pi_0(\mathrm{SO}(4)) = \mathbb{Z}, \qquad \Pi_1(\mathrm{SO}(4)) = \mathbb{Z}_2,$$
  
$$\Pi_2(\mathrm{SO}(4)) = 0 \qquad \text{and} \qquad \Pi_3 = (\mathrm{SO}(4)) = \mathbb{Z} \oplus \mathbb{Z}.$$

We examine the universal obstructions in turn (clearly  $\theta_3 = 0$ ).

(1)  $\theta_1 \in H^1(BSO(4), \mathbb{Z})$ . Recall that  $H^1(BSO(4), \mathbb{Z})$  consists entirely of elements of order two. This implies that the group must be isomorphic to a subgroup of  $H^1(X, \mathbb{Z}_2)$ , which as we noted above is a trivial group. Therefore  $\theta_1 = 0$ .

(2)  $\theta_2 \in H^2(BSO(4), \mathbb{Z}_2)$ . The space  $H^2(BSO(4), \mathbb{Z}_2)$  is the one-dimensional  $\mathbb{Z}_2$  linear space with basis the class  $W_2$ . It therefore follows that there exists a number z in  $\mathbb{Z}_2$ such that  $\theta_2 = z$ .  $W_2$ . Now z = 0 or 1. We demonstrate that z = 1 by constructing a compact orientable four-manifold X whose four-dimensional obstruction classes ( $P_1$ and E, see below) are trivial but which is non-parallelisable with  $W_2(X) \neq 0$ . Let  $X_0$ be the total space of the non-trivial two-sphere bundle over  $S^2$ . (The isomorphism classes of such bundles are in one-to-one correspondence with the set of isomorphism classes of associated principal SO(3) bundles. By universality, the latter set is just the set of homotopy classes of maps from  $S^2$  into BSO(3), i.e.  $\Pi_2(BSO(3)) \cong \Pi_1(SO(3)) \cong$  $\mathbb{Z}_2$ , implying that there is just one non-trivial class.) It can be shown that  $X_0$  is diffeomorphic to the connected sum  $\mathbb{C}P^2_+$  &  $\mathbb{C}P^2_-$  of two oppositely oriented copies of the complex projective plane  $\mathbb{C}P_{\pm}^2$ . Note that  $W_2(X_0) \neq 0$  since by using methods similar to those used in the proof of part (1) of theorem 1, one can derive a class x in  $H^2(X_0, \mathbb{Z}_2)$  with  $x \cup x \neq 0$  from the Stiefel-Whitney class  $W_2(\mathbb{C}P^2)$ . The latter has  $W_2(\mathbb{C}P^2) \cup W_2(\mathbb{C}P^2) \neq 0$  because for any four-manifold X,  $W_2(X) \cup W_2(X)$ .  $\langle X \rangle =$ E.  $\langle X \rangle$  mod(2) and E.  $\langle \mathbb{C}P^2 \rangle = 3$ .  $P_1 \langle X_0 \rangle = 0$  follows from the fact that  $X_0$  is cobordant to the disjoint sum  $\mathbb{C}P^2_+ \cup \mathbb{C}P^2_-$  which is the boundary of the cylinder  $\mathbb{C}P^2 \times D^1$ . E.  $\langle X_0 \rangle = 2$  is easily derived from Mayer-Vietoris arguments. Therefore using theorem 1, the modified manifold  $X_{0s}$  has  $W_2 \neq 0$ , E.  $\langle X_{0s} \rangle = 0$  and  $P_1$ .  $\langle X_{0s} \rangle = 0$ .  $X_{0s}$ cannot be parallelisable since it has at least one non-trivial characteristic class.

Note that the above manifold is an example of a compact space-time which cannot admit a spinor structure. Another example can easily be derived from the complex projective plane which this time has a non-trivial Pontryagin number. Take  $Y = \mathbb{C}P_+^2 \& \mathbb{C}P_+^2$ . Then it is easy to show that  $E \cdot \langle Y \rangle = 2$ .  $P_1 \cdot \langle Y \rangle = +6$  follows most easily from the observation that Y is oriented cobordant to the disjoint sum  $\mathbb{C}P_+^2 \cup \mathbb{C}P_+^2$  which trivially has signature +2.  $Y_s$  is therefore a compact space-time (because  $E \cdot \langle Y_s \rangle = 0$ ) but cannot be a spinor manifold because  $P_1 \cdot \langle Y \rangle = 6$  contradicts Rohlin's theorem.

(3)  $\theta_4 \in H^4(BSO(4), \mathbb{Z} \oplus \mathbb{Z})$ . It is easy to show that the cohomology group is isomorphic to the direct sum of two copies of  $H^4(BSO(4), \mathbb{Z})$ . Recall that the latter group is generated by E and  $P_1$  (modulus elements of order two, which we ignore since we are really interested in the images of  $\theta_4$  in groups  $H^4(X, \mathbb{Z} \oplus \mathbb{Z})$  which are free Abelian). But then it follows that  $H^4(BSO(4), \mathbb{Z} \oplus \mathbb{Z})$  is freely generated over the ring  $\mathbb{Z} \oplus \mathbb{Z}$  by the universal Euler class E and the universal Pontryagin class  $P_1$ . We therefore have to find elements  $(a_1, a_2)$  and  $(b_1, b_2)$  of  $\mathbb{Z} \oplus \mathbb{Z}$  such that  $\theta_4 = (a_1, a_2) \cdot E + (b_1, b_2) \cdot P_1$ . Without being able to compute these numbers explicitly, we can show that neither is trivial by geometrical constructions.

(a)  $(a_1, a_2) \neq 0$ . This is demonstrated by exhibiting a compact four-manifold X with

 $W_2(X) = 0, P_1 \cdot \langle X \rangle = 0$ , but E  $\cdot \langle X \rangle \neq 0$ . The obvious example is  $S^4$  which has  $W_i = 0$  for all  $i \neq 0, P_1 \cdot \langle S^4 \rangle = 0$  following from the fact that  $S^4 = \partial_0 D^5$  and E  $\cdot \langle S^4 \rangle = 2$ .

(b)  $(b_1, b_2) \neq 0$ . Suppose that we were able to find a starting manifold X with non-trivial Pontryagin number, trivial second Stiefel-Whitney class and with a positive even Euler number. Then, using theorem 1, we could obtain a modified manifold  $X_s$  with non-trivial Pontryagin number, trivial second Stiefel-Whitney class and a trivial Euler number. The existence of such a manifold would verify the assertion  $(b_1, b_2) \neq 0$ . Two types of starting manifold exist. The classic example is the Kummer surface (Spanier 1958). This space is derived from the four-torus  $(S^1)^4$  under the singular  $\mathbb{Z}_2$  action represented by complex conjugation in each factor of the product. The quotient space  $(S^1)^4/\mathbb{Z}_2$  is a manifold except around the sixteen singular points  $(\pm 1, \pm 1, \pm 1, \pm 1)$ . The Kummer surface is obtained by 'smoothing out' these sixteen singular points. Its characteristic classes, derived in (Spanier 1958) are  $P_1 \cdot \langle X \rangle = 48$ ,  $E \cdot \langle X \rangle = 24$ , and  $W_2 = 0$ . By theorem 1, twelve spherical modifications will kill the Euler number but leave  $P_1 \cdot \langle X \rangle = 48$  and  $w_2(X) = 0$ .

A whole family of possible starting manifolds is the set of non-singular algebraic surfaces in  $\mathbb{C}P^3$  of degree four (Milnor 1958, Hirzebruch 1966) which have E.  $\langle X \rangle = 24$ ,  $P_1 \cdot \langle X \rangle = -48$  and  $W_2(X) = 0$ .

Note that any of the above spherically modified compact four-manifolds provide direct counter examples to the assertion by Lee (1975), all being compact non-parallelisable spinor space-times.

We are now in a position to re-derive the theorem of Hirzebruch and Hopf.

Theorem 2. A smooth, compact, orientable four-manifold is parallelisable if and only if  $P_1 = 0$ , E = 0 and  $W_2 = 0$ .

*Proof.* Clearly, if  $P_1$ , E and  $W_2$  are all trivial, all the obstructions must vanish. Conversely, if a four-manifold is parallelisable, all its characteristic classes must be trivial.

Corollary. A compact spinor space-time is parallelisable if and only if its Pontryagin number is trivial, or equivalently, if and only if it is a spin boundary.

*Proof.* The first assertion is obvious by Steenrod's theorem. The second follows from the fact that an oriented four-manifold is an oriented boundary if and only if its Pontryagin number is trivial. (An oriented boundary with a spin structure must therefore be spin cobordant to a spinor boundary and hence spin cobordant.)

## Acknowledgment

Thanks are due to Lyndon Woodward for correspondence about four-manifolds.

## References

Geroch R P 1968 J. Math. Phys. 9 1793-44 Hirzebruch F 1966 Topological Methods in Algebraic Geometry 3rd edn (Berlin: Springer) Hirzebruch F and Hopf H 1968 Math. Annln Bd. 136 156-72 Husemoller D 1966 Fibre Bundles (New York: McGraw-Hill) Lee K K 1975 Can. Math. Bull. 18, No. 3

- Milnor J 1958 Proc. Int. Symp on Algebraic Topology, Mexico 1958 (Princeton: Princeton University Press) pp 122-8
- Spanier E 1958 Proc. Am. Math. Soc. 7 155-60
- ----- 1966 Algebraic Topology (New York: McGraw-Hill)